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ABSTRACT 
The ability to perform accurate nonlinear simulations is a key component in the 
assessment of the behavior of seismic force resisting systems. A three-dimensional 
distributed plasticity formulation for composite beam-columns suitable for nonlinear 
static and dynamic analyses of composite seismic force resisting systems has been 
developed. New uniaxial constitutive relations are developed for the concrete and 
steel elements to simulate the cyclic response of steel reinforced concrete (SRC) 
members. The relations account for the salient features of each material, as well as the 
interaction between the two, including for concrete: varying levels of confinement 
within a section, cracking, crushing, and spalling, and for steel: cyclic plasticity and 
residual stresses. The accuracy of the formulation is validated against a 
comprehensive set of results from monotonically and cyclically loaded beam-column 
specimens. The formulation is suitable for use in parametric studies to quantify the 
seismic performance factors of special moment frames using steel reinforced concrete 
columns and structural steel beams following recommendations of the recently 
released FEMA P695 report.  

INTRODUCTION  
Steel-concrete composite columns have been shown to have high strength, stiffness, 
and ductility. However, there is a lack of quantitatively justified guidance for design 
of structures with these members. Notably, there is little data is available to justify the 
structural system response factors (e.g., R, Cd, and Ωo) given in the specifications. In 
the current work, we strive to fill these gaps through developing system response 
factors; assessing beam-column strength; and establishing guidelines for the 
computation of equivalent composite beam-column rigidity to be used in seismic 
analysis and design of composite frames. Accurate nonlinear static and dynamic 
computational formulations are required to achieve these goals. Specifically, for 
developing rational system response factors, a model should directly simulate all 
predominate inelastic effects from the onset of yielding through strength and stiffness 
degradation causing collapse, while being sufficiently robust to track inelastic force 
redistribution without convergence problems up to the point of collapse (FEMA 
2009).  



Often, SRC members are modeled with constitutive relations taken directly from 
structural steel and reinforced concrete theory. This approach neglects the beneficial 
effects that the composite section provides, namely the added confinement of the 
concrete by the steel shape and the delay of local buckling in steel shape (although 
local buckling is often not modeled in structural steel). Several researchers have 
developed models specifically for use with SRC members (Mirza 1989, Sanz Picon 
1992, Elnashai and Elghazouli 1993, El-Tawil and Deierlein 1999, Chen and Lin 
2006) that do account for the beneficial effects provided by the composite section. A 
defining feature among all of these models is the varying levels of concrete 
confinement assumed throughout the cross-section. The differences between the 
models arise from the use of different mechanistic assumptions and empirical 
relations for the various aspects of section behavior (e.g., differences in determination 
of confining pressure and confinement model). The validity the models and thus their 
underlying assumptions are shown through comparisons between computation and 
experimental results. The model presented in this work utilizes a sophisticated finite 
element as well as comprehensive cyclic constitutive relations. Additionally, 
extensive validation is performed to ensure accuracy.  

THREE-DIMENSIONAL MIXED BEAM FINITE ELEMENT  
Frame analyses using distributed-plasticity beam-column elements strike a favorable 
balance of computational efficiency and accuracy. Additionally, mixed formulations 
(defined here as treating both element displacements and stress resultants as primary 
state variables) provide more accurate results with fewer elements as compared to 
either displacement- or force-based formulations (Alemdar and White 2005).  Tort 
and Hajjar (2010) developed a three-dimensional mixed beam-column element for the 
analysis of composite frames that include rectangular concrete-filled steel tube 
members, validating against a large number of experimental tests of composite 
members and frames. This finite element was adapted and further validated against an 
additional set of experimental tests on circular concrete-filled steel tube members 
(Denavit 2009). The element stiffness and internal force are derived in the 
corotational frame using small strain assumptions. When accompanied with an exact 
transformation between the corotational and global frame the element is capable of 
capturing moderate deformation and rotation behavior. The use of independent force 
interpolation functions provides for a more accurate representation of the nonlinear 
curvature along the length of a yielded member. Implemented within the OpenSees 
framework (OpenSees 2011), the element can be used with the wide variety of other 
elements and solution algorithms available in the framework.  

UNIAXIAL CYCLIC CONSTITUTIVE RELATIONS 
The formulation relies on accurate constitutive relations to achieve accurate results. 
The constitutive relations are defined for the finite element at the section level using a 
fiber model. A fiber model allows the wide variety of behavior exhibited by SRC 
sections to be described by the integration of uniaxial constitutive relations located 
throughout the section.  

It is desired that the fiber section be defined with minimal input from the analyst. The 
required input from the analyst includes: basic dimensions (depth of the composite 



section, H and width of the composite section, B), dimensions of the steel section 
(depth, d, flange width, bf, flange thickness, tf, and web thickness, tw), material 
properties of steel section (yield strength, Fys, ultimate strength, Fus, and elastic 
modulus, Es), concrete material properties (compressive strength, f′c), dimensions and 
material properties of the longitudinal and transverse reinforcement, and fiber density. 
Using these parameters, the uniaxial constitutive relations and fiber section are 
defined. Five distinct regions are identified within the section (Figure 1). Separate 
constitutive relations are defined for each of these regions.  

 
Figure 1. SRC Section 

The constitutive relation used for the wide flange steel shape and the reinforcing steel 
bars is based on the bounding-surface plasticity model of Shen et al. (1995). 
Modifications were made to model the effects of residual stress within the steel 
section. The residual stress at a fiber is modeled explicitly as an initial elastic stress in 
the uniaxial constitutive relation. The Lehigh residual stress pattern (Galambos and 
Ketter 1958) is used to define the value of residual stress in the steel section with a 
maximum compressive residual stress of 30% of the yield strength occurring at the 
flange tips. The confined concrete is assumed to prevent flange and web local 
buckling and thus, these effects have not been included. In contrast, the model by 
Elnashai and Elghazouli (1993) is for partially encased composite columns and 
includes flange local buckling since the concrete only prevents inward buckling of the 
flange.  For simplicity, the wide flange steel section is modeled with sharp corners 
(i.e., neglecting the fillets). 

The constitutive relation for the concrete is based on the rule-based model of Chang 
and Mander (1994). The backbone stress-strain curve for the concrete is based on the 
model by Tsai, which is defined by the initial stiffness Ec, peak coordinate (ε´cc, f´cc), 
and r which acts as a shape factor. The confinement model developed by Mander et 
al. (1988) for a triaxial state of stress is utilized to determine the peak compressive 
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strength from the confining pressure in two orthogonal directions (Equations 1 
through 5).  
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where, the strain at peak stress for unconfined concrete, εc, is given by Equation 6 

 0.25 1150.0c cfε ′=  (6) 

In order to accommodate low values of r necessary to model high confinement 
pressures, two values of r are used; one prior to the peak stress reached and one after 
the peak stress is reached. The value used prior to the peak is based on unconfined 
concrete, while the one after the peak accounts for the level of confinement and is 
based on a comparison of the models of Tsai and Popovics (Chang and Mander 
1994). These and other parameters for the concrete model are as described in Table 1. 

The outermost concrete region of concrete, also termed the cover concrete, is 
assumed to have zero confining pressure in either direction. Furthermore, it is allowed 
to spall. Spalling is modeled by modifying the nonlinear compressive backbone curve 
so that the stress and tangent reduce to and remain at zero after a certain strain. The 
concrete inside the lateral reinforcing bars is termed the medium confined concrete. 
In this region, confining pressure is provided by the lateral reinforcing bars. The 
magnitude of the confining pressure is computed in two orthogonal directions with 
Equations 7 and 8.  

 ,ly medium e y yrf K Fρ=  (7) 

 ,lz medium e z yrf K Fρ=  (8) 

where, Ke is the ratio of effectively confined cross sectional area to area of the core as 
defined by Mander et al. (1988), ρy, ρz are the volumetric ratios of the transverse 
reinforce steel in either direction as defined by Mander et al. (1988), and Fyr is the 
yield strength of the longitudinal reinforcement.  

The concrete between the flanges is termed highly confined concrete. In this region, 
confining pressure is provided by the lateral reinforcing bars and the steel shape. El-
Tawil and Deierlein (1999) developed a mechanism model in which the confining 
pressure provided by the steel shape acts only in the y direction (Figure 1) and is 



computed considering the plastic moment capacity of the flange (Equation 9). The 
distance between the vertex of the parabola defining the boundary between the highly 
and medium confined concrete (Figure 1) and the centerline of the steel section is 
described by Equation 10. This parabolic boundary is modeled explicitly with 
different constitutive relations on either side. In contrast, the parabolic boundary 
between the cover and medium confined concrete is implicitly modeled, utilizing the 
factor Ke to provide average behavior. The difference in handling these two 
boundaries exists to provide greater accuracy in modeling the boundary between the 
flanges while retaining the flexibility of different possible configurations of 
reinforcing steel. A comparison of the monotonic compressive response of the 
concrete in each of the three regions is shown in Figure 2. 

 
( )

2

, , 2
0.75

f ys
ly high ly medium

f w

t F
f f

b t
= +

−
 (9) 

 ( )0.50 0.25 2 0.50a f f wz b d t t= − − ≥  (10) 

The discretization of the fiber section (i.e., computation of location and area of the 
fibers) is consistent with the geometric description of the cross section presented here. 
The sum of the area of the fibers for each material type and the total for the section 
are exact for the selected geometry and do not change with the fiber density. The 
moment of inertia of the section as computed from the fibers approaches the exact 
value with increasing fiber density. The discretization is implemented for general 
three-dimensional analyses as well as for two-dimensional analyses where bending is 
along either the strong or weak axis. The fiber discretization for two-dimensional 
analyses takes the form of strips allowing a significant savings in the number of fibers 
used. The fiber density is defined as the nominal number of fibers along the strong 
and weak axis with the number of fibers for individual section components (e.g., steel 
flanges or concrete cover) determined in proportion to their size relative to the entire 
section. A discretization of 20×20 (or simply 20 for two dimensional analyses) is 
found to be both accurate and efficient and is used for the analyses presented in this 
paper.  

 
Figure 2. Concrete Constitutive Relations 
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Table 1. Concrete Material Properties 

 

VALIDATION OF THE FINITE ELEMENT METHOD 
To validate the accuracy the model, a large number of comparative analyses were 
performed against experimental results. A selection of the validation results for 
monotonic proportionally loaded beam-columns and cyclic non-proportionally loaded 
beam-columns is presented here.  

Proportionally Loaded Beam-Columns 
The most common experimental configuration for testing SRC beam-columns is 
monotonic proportional loading (Figure 3). Tests of this type have been performed by 
Virdi and Dowling (1973), Roderick and Loke (1975), Morino et al. (1984) and Wang 
(1999), and others. Details of four specimens from these experimental studies are 
presented in Table 2. The results of these experiments are compared to results from 
analyses conducted using the model presented in this work (Figure 4). When the 
eccentric of the applied load coincided with one of the principal axes of the column 
(i.e., strong or weak axis bending), one mid-height lateral deflection is reported. 
When the applied load induces biaxial bending, two mid-height lateral deflections are 
reported, one for each of the columns principal axes.   

 
Figure 3. Proportionally Loaded Beam-Column Test Schematic 

The results (Figure 4) show a good correlation between experimental and 
computational results. This is seen in the initial stiffness, peak load, deflection at peak 
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load, post-peak degradation, and ratio of strong and weak axis deflections. The two 
specimens by Morino et al. (1984) (Figure 4c,d) have a similar cross section and 
loading angle, but specimen D8-45 has approximately twice the length and 
eccentricity of B4-45. The higher first- and second-order moments resulted in a 
significantly lower peak axial load for D8-45. The model predicted the peak axial 
load accurately for both specimens indicating that model captures well both material 
and geometric nonlinearity.  

Table 2. Proportionally Loaded Beam-Column Specimen Data 

 

 
(a) Wang 1999; Specimen: RSJ1 

 
(b) Virdi and Dowling 1973; Specimen G 

 
(c) Morino et al. 1984; Specimen B4-45 

 
(d) Morino et al. 1984; Specimen D8-45 

Figure 4. Proportionally Loaded Beam-Column Validation Results.  

Author Year Spec- 
imen

H 
(mm)

B 
(mm)

f'c 

(MPa)
Steel Section Fy 

(MPa)
db 

(mm)
Fyr 

(MPa)
L 

(mm)
Axis e 

(mm)
Wang 1999 RSJ1 200 200 55.0 RSJ 102x102 310.0 n/a n/a 4,000 Strong 55.0

Virdi and Dowling 1973 G 254 254 44.8 UC 6x6@15.7 314.7 12.7 309 7,315 Biaxial 73.4
Morino et al. 1984 B4-45 160 160 23.4 H-100x100x6x8 287.0 4.0 387 2,309 Biaxial 40.0
Morino et al. 1984 D8-45 160 160 22.9 H-100x100x6x8 302.0 4.0 387 4,619 Biaxial 75.0
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Cyclically Loaded Beam-Columns 
A set of carefully controlled and well documented non-proportionally loaded cyclic 
SRC beam-columns tests was performed by Ricles and Paboojian (1993, 1994). The 
specimens were subjected to a constant axial load and cyclically increasing horizontal 
displacements (Figure 5) which induced strong axis bending in the column.  

 
Figure 5. Cyclically Loaded Beam-Column Test Schematic 

Details of two of specimens from this experimental study are presented in Table 3. 
The load-deformation results of these experiments are compared to those from 
analyses conducted using the model presented in this work (Figure 6a,b). 
Additionally, the stress-strain response from the extreme fiber of the steel section 
(Figure 6c) and the extreme fiber of the highly confined concrete (Figure 6d) as 
predicted from the analysis are shown.  

 
(a) Specimen 6 

 
(b) Specimen 8 

 
(c) Specimen 6, Steel Section Fiber Stress-

Strain Relationship 

 
(d) Specimen 6, Highly Confined Concrete 

Fiber Stress-Strain Relationship 
Figure 6. Cyclically Loaded Beam-Column Validation Results.  
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Table 3. Cyclically Loaded Beam-Column Specimen Data 

The results (Figure 6) show a good correlation between experimental and 
computational results. The initial stiffness and peak strength are predicted well by the 
model. The unloading stiffness and yield upon unloading are less accurate, leading to 
the model predicting fuller hysteresis loops than observed in the experiments. Similar 
discrepancies between experimental and computational results have been noted in 
other SRC models (e.g., Elnashai and Elghazouli 1993). 

CONCLUSION 
A finite element formulation for analysis of SRC members and frames has been 
presented. The formulation included a mixed based distributed-plasticity beam 
element and uniaxial constitutive relations. The cyclic uniaxial constitutive relations 
account for the salient features of SRC behavior. The concrete constitutive relation 
was based on a rule based model from the literature. Three regions of concrete were 
defined with separate material properties based on computed levels of confinement 
pressure. The steel constitutive relation was based on a bounding surface plasticity 
model from the literature with modifications so that residual stresses could be 
modeled explicitly within the steel section. A validation was performed showing good 
correspondence between experimental and computational results for a selection of 
both monotonic and cyclic tests. The finite element formulation provides an accurate 
analysis tool for use with composite frames and is suitable for use in parametric 
studies such as those necessary to develop system behavior factors.  
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